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1. INTRODUCTION

If the conductivity and dielectric constant of two distinct media
are known, the amount of electromagnetic energy which will be reflected
at their interface can be related to the incident energy through the
Fresnel equations. On a large scale, the earth-air boundary is an
example of such an interface. In comparison to the earth, the electri-
cal properties of the air can be considered relatively independent of

regional variations. Therefore, obtaining typical electrical properties
of the soil in a particular region becomes a primary objective if the
reflection coefficients are desired.

With regional values, the reflection of electromagnetic energy, such
* as that encountered after a high-altitude nuclear burst, can be calcu-

lated. Without regional values, however, the spectrum of energy
reflected may be inadequately predicted. Any method of approximating
conductivity and dielectric constant will produce an error if it ex-
cludes regional variables such as structure or mineral content, or if it
excludes frequency and moisture content. To determine whether this

* error should cause significant concern, the actual values for conductiv-
*ity and dielectric constant can be measured and compared with predicted

values. In this way, the reflected energy spectrum can be more accu-
- rately predicted.

2. SOIL PARAMETERS

In order to determine the energy of a pulse wave reflected from the
surface of the earth, the electrical properties of this soil/air bound-

. ary must be known. The Fresnel equations, which describe the reflection

. of electromagnetic energy, require that the conductivity, permittivity,
* and permeability of both the air and the soil be known. Under normal

conditions, and in comparison to soil, the electrical properties of air
are approximately equal to those of free space. Therefore, determining
the electrical properties of the earth becomes a primary concern.

Several studies have been conducted concerning the electrical prop-
erties of the soil. The results of these studies state that the conduc-
tivity (0) and permittivity (C) can be predicted at a specified

frequency, if the moisture content is known. The permeability (j),
which is a function of the ferrous mineral content, deviates slightly
from that of free space in most regions.

Scott i measured numerous samples over the frequency range of 102 to
106 Hz. After averaging his data, he produced a set of curves for

1J d. Scott, Electrical and Magnetic Properties of Rock and Soil,

U.S. Geological Survey, Note 18 (1966). ;

7
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* -. conductivity and dielectric constant as functions of frequency. These
*! curves, which have become known as Scott's universal curves, have been

curve fit with a second-order surface fit and are mathematically repre-
sented in equations (1) and (2).

Scott's curve fit for conductivity is

K = -0.604 + 1.640W - 0.062F + 0.062W2 - 0.O0FW + 0o.021F 2; (1)

the curve fit for relative dielectric constant is

D = 4.905 + 1.308W - 0.971F + 0.111W 2 - 0.160FW + 0.059F2, (2)

where

K = logi0 of conductivity (mmho/m),
D = log10 of dielectric constant (C/C 0 ),
W = log1 0 of water content (percent by volume), and
F = log 10 of frequency (Hz).

Since Scott's work encompasses a large variety of laboratory-
measured soil samples (samples which correlated well with field measure-
ments), equations (1) and (2) give an average of conductivity and di-

-" - electric constant over various regions.

C. L. Longmire2 developed a time-domain representation called th.-
universal RC network model (fig. 1). The basic assumption of this model
is that the soil can be regarded electrically as an equivalent network
of resistors and capecitors. Longmire made no laboratory measurements,
but by using Scott's curves and data that he received by private
consultation with Wilkenfeld, 2 he extended the expected validity of his
model over the frequency range of 100 to 3 x 1012 lZ.

;, ,R, R2I, { 2  CRNI T.2
Figure 1. Universal network model.

2C. L. Longmire, A Universal Impedance for Soils, Defense Nuclear

Agency, DNA 3788T (1975).
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Longmire's model states that

R = , = 1
o 0 n 2wfC 0nfn

where

C is capacitance,
a is a constant,
R is resistance,
R is the resistance of the circuit that is asymptotically ap-

proached as frequency is decreased,
a is conductivity,
f is frequency, and
the subscript - indicates a value which is asymptotically approached
as frequency is increased.

The relative dielectric constant of the soil is

N a
e =C/C =C. +- (3)

r ff I0 TL 2na, 3

n=1I + (f/fn)2

and the conductivity is
' ~~ ~ ~ ( f/fn)2'- .. '

a fi + 2wc0  . anf 1 (mho/m) , (4)0n=1 1 + (f/fn)2

n=n

where f accounts for moisture content. Table 1 gives coefficients for
universal soil as derived by Longmire's model.

TABLE 1o COEFFICIENT an FOR UNIVERSAL SOIL

n a n a n a
1 3.40 x 106 6 1.33 x 102 11 9.80 x 10- 1

2 2.74 x 105  7 2.72 x 10 12 3.92 x 10- 1

3 2.58 x 104 8 1.25 x 10 13 1.73 x 10- 1

4 3.38 x 103 9 4.80 -.4.,"

5 5.26 x 102 10 2.17
a...:

9 4

.41

PAW :::A'< * .;' - -'** 4. 4 -. - : A.D- - -. . -.-;-

a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~7 77 7 . . -* .- ... .a'.. - - . *~44* *'.'~a-
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To obtain a standard for evaluating the. error which might be in-
curred by applying the results of this network model in a region which
does not follow the typical soil parameters, laboratory measurements
were made of r and a for five samples of soil taken from the Harry
Diamond Laboratories, Woodbridge Research Facility, Woodbridge, VA. The
National Bureau of Standards conducted these measurements over the
frequency range of 5 x 106 to 6 x 108 Hz. Following Scott's work, a
second-order surface fit was made for these data as given in equations
(5) and (6):

D = 5.886 - 1.045F - 2.055W + 0.077FW + 0.056F 2 + 1.180W 2  , (5)

K = -3.233 + 0.6453F - 0.448W - 0.105FW - 0.0113F 2 + 0.8876W2 . (6)

Equations (5) and (6) are henceforth referred to as the varying regional
parameter equations.

The averaged values at 5-, 10-, 15-, 20-, and 25-percent moisture
content for conductivity and dielectric constant arp shown in figures 2
and 3. Also shown are the values predicted by the Longmire universal
network model for 10-percent moisture content (eq (3) and (4)).

.2

As can be seen from figure 3, averaged values for conductivity are
considerably below the values predicted by the network model. Since
these data were obtained in a region of higher than average rainfall,
and taken from the uppermost soil, it is believed that their values
indicate only that the surface soil possesses a low conductivity.
Several other field measurements were taken near the laboratory,
measurements which indicate that the conductivity of the soil increases

sharply a few feet below the surface of the earth. Unfortunately, the

samples were too few to determine where the sharp increase took place

nor what conductivity the soil might possess in the lower strata.

When either conductivity or dielectric constant changes from one
homogeneous medium to another, as is the case at the Woodbridge Research 0-
Facility, a second medium for reflection is provided. Because these

boundaries are close to each other, the energy which is transmitted

through the primary boundary will undergo a second reflection at the

secondary boundary. The wave which will ultimately be seen by an ob-
server will be a combination of an incident wave, a primary reflected-:
wave, and a series of multiply reflected waves. This problem is
discussed briefly after the reflection from the primary boundary is

discussed.

10
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Figure 2. Relative dielectric constant versus frequency at sample
points between 0.5 and 600 MHz. Longmire's curve for 10-percent
moisture is also shown for comparison.
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*Figure 3. Conductivity versus frequency at sample points between 0.5
and 600 MHz. Longmire's curve for 10-percent moisture is also shown for
comparison.
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3. REFLECTION COEFFICIENTS FROM SOILS

3.1 Single Reflection

Soils, like most common materials, fall in the category of
lossy dielectrics. Fresnel's equations (as discussed in many electro-
magnetics texts 3) describe the reflection/transmission process of elec-
tric and magnetic components of an electromagnetic field across the
boundaries of two distinct media. The following equations relate to
figures 4 and 5.

For the E field normal to the plane of incidence,

1 2k (cos 02 + cos 6o)
E E0 (7)1 = 2k I cos e2 + 1k 2  cos 61 EO

uk cos 601 uk cos, 82 1 0 1 2 1
E E E82 = k cos 2  + u k cos E (8)

2_1 2 12 1

E2 Figure 4. Polarization normal to
"2 .plane of incidence.

, .~~o 0co 
[;.no

PLANE OF INCIDENCE '

-. .-..

• % 
E1A1,01 12,A2,02 % .

n.: -- -, --:.-..

Figure 5. Polarization parallel to Ea
plane of incidence.

APLANE OF INCIDENCE

.S

3j. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co. (1941).
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For the H field normal to the plane of incidence,

H k 2(Cos 02 + kcos HO (9

3k Cos e p 2k1 cos 01 0

2 1k Cos e + )I k Cos e 10
1 2 0 2 1 1

where 0 is angle of incidence, and k1  is the complex propagation
constant defined by

2.

where W= 21rf.

Through Snell's law

sin 00= sin 02 and

k2 sin e 0 =k, sin 01

The reflection coefficients can be written

E U1k cos6 -Ii Vk- k 2si.n0
2 2 1 0 1 21 0

R - -
H F 0 2 2 2 .

U k cosO 6-Vk sin 06 I
2 1 0 2 1 0

for E normal to the plane of incidence, and

H 2  I 2 8o e0 2 k -k1sin 00
R = - = 1 2 cs -3 2 1 I 2 -

V H 0  2 k2 2
311 k2 Cos 80+ i2k 2 - k 1sin O

for H normal to the plane of incidence.

13
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By considering a typical air/earth interface, these formulas
can be further simplified. Medium 2 (characterized by 02, U2, £2) is
that of the earth, and medium I (characterized by o1 , ' ) is that of
air; since

P1  P2  UO

"': 1 £ 0 ,

0 0

the reflection coefficients can be simplified to

cos 80  r - j - sin 2

R = (11)
H I

Cos +- Ain2 0 sin,.sr cow)

and

.1 ~ 2".'.: - jCos e0- s i n 2  0":"Ci W( TO- 0
r J cos -0 sin 0

- co elljO-e ) -:

where cr = c1/c0 and subscripts H and V refer to horizontal and vertical

components.

Figures 6, 7, 8, and 9 show the magnitudes and phases of
reflection coefficients RH and RV using varying regional parameter
equations. The angle of incidence is 600.

The incident and reflected waves combine to form what is
generally referred to as the total wave. These equations have been
developed in other texts4 and are restated here:

". A. Messier, The Effects of Ground Reflection on Observed EMP

Waveforms, Defense Nuclear Agency, DNA 3370T (1974).

14
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E -j hl/AXJIEV + +R e cs co , (13)

E FE + R e-'IX sin *cos 9 (14)

-*R 01~ V JI

where

X Ewavelength,
h distance betweepi point of reflection and observer,

-E polarization of' E vector, parallel to vector n,
E-Eradial wave, and

incident wave.

These equations apply to the geometry of figure 10 and assume that the
distance between the source of the pulse and either the observer or the
earth is much greater than the distance between the earth and the ob-
server.

10
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Figure 7. Pha.,' .f reflection coefficients (RH using varying-parameter
model at 5-, 10-, 15-, and 20-percent moisture.
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* Figure 9. Phase of reflection coefficients (Rv) using varying-parameter
model at 5-, 10-, 15-, and 20-percent moisture.
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3.2 Multiple Reflection

If there is a marked increase in soil conductivity at some
.th, =s is the case for most of the eastern seaboard, 5 a transmitted ,..

- ;e ill undergo a primary reflection and a series of multiple
reflec ions. Figure 11 depicts this process. The total wave seen by an
observer just above the earth will be composed of an incident wave, a

primary reflected wave, and a series of multiply reflected waves. 6

The multiply reflected pulse is a geometric series:

E =EO[1 + eJAl(p + T''p' ejA2

+ TTP.2 pfeJ 2 A2 + Trp.,3p" 2 ej3A2 ... 16

(for zero polarization)

where

Er = resultant E field,
p = reflection coefficient,
T = transmission coefficient,
A, and A2 account for phase delay and attenuation in medium 1 and

medium 2, respectively, and
primes indicate the number of times the wave has been reflected.

PRIMARY
REFLECTED MULTIPLY REFLECTED

WAVE WAVES

1 2 3 4

MEDIUM 3 K3

Figure 11. Multiply reflected wave.

" '" 5E. D. Sunde, Earth Conduction Effects in Transmission Systems, D. Van
Nostrand Co. Inc. (1968). adSn.Ic.170.':-.

6M. V. Klein, Optics, T. Wiley and Sons rnc. (1970).
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Equation (16) can be reduced to the closed-form equivalent:

Er EO[T'p ejAl 1+ (17)

Phase delay and attenuation can be found by

_~ ~ ( 1h 122 f 2\1/2

2hw a 2 1/

1p2c 
2

1 Cos 1 0 - W-1  in

0 2112

2h 2 '2 2 2 2.
k A k si - + -_ si+

2 1 1

2 1 3 2

k 1Cos002 k 2o k0 i
FTH 2 2 2------.- (20)

k Cos 0 + Vk-ksi
1 0 21 0

k 2 k2 sin 2  si 2  0 i
2 ~ ~ 1

H 2 2 2 2 2 2 (9
k -k sin e0+ k k sin a 21
4 2 1 3 1

19 0

4T

* ~ .. . S 0 * * 4 * ~ H
T2 2 9 (0

k Co 6 + j i
W..'1 0;., 2 1 0.% -.
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for E-field normal to plane of incidence, and

2 2 2 2
k cos 0 - kI 2 -k sin e
=2 0 1 2 1 0 (2F PV =,(22) ;

* . k2 cos e + k k2 sin 2 6
2 0 2 1 0

24k2 2 2 2 2 2 2
k k sin B k Vk - sin

-3 2 1 '1 2 3 1 1
2 2 (23)

k k -k sn 2 e k2  k2 - 2 si 2 61
'3k 2 k1 sn e1 +k2 3 k1 1

2
2k cos e

T = 2 0 (4
T 21 k2 2 24
k cos 0 + k k sin 0
2 0 1 2 10

2 Vk 2 2 7,
2k 2 2 - k1 sin 81

TV, (25)
V; 2 2 2 2 2 2 2 el

k k -k s in e + k k k sin B
3 2 1 1 2 3 1 1

for E-field parallel to plane of incidence.

The reflection coefficients (RH) for multiply reflected waves
in a stratified medium are shown in figures 12, 13, and 14 (eq (18)
through (21)). Figures 15, 16, and 17 show RV for multiply reflected
waves (eq (22) through (25). Here, the depth of medium 2 is 1/2, 1, and
2 m, respectively. Media 1 and 3 are considered infinite. The propaga-
tion constant kI is that of free space. Constant k2 was generated from

* the variable regional parameter equation and k3 was generated using the
network model. The angle of incidence is 600.

As can be expected, for the multiply reflected wave, the lower
frequency components are more readily transmitted through the soil/soil

"*. boundary. At higher frequencies, a declining magnitude is due to in- -'
creased attenuation in addition to increased soil conductivity.

20
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77 '7 ..

Since the properties of the upper stratification below 105 Hz
are not known, and the properties of the lower stratification are only
conjectured to follow the universal network model, this analysis is not
included in the final analysis of the reflected pulse; however, it is
discussed here to show how a homogeneous model which uses either the

* universal network model or the variable regional parameter model may
deviate from a possible real situation.

25
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~~~Figure 12. Magnitude of multiple reflection coefficient (R ) for a two- [{'
~~layer earth. Varying-parameter model is used for upper layer (0.5 m .. :

thick), and network model is used for lower layer (infinite half plane). "
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-E, ' thick), and network model is used for lower layer (infinite half plane)...
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Figure 14. Magnitude of multiple reflection coefficient (RH) for a two-
layer earth. Varying-parameter model is used for upper layer (2 m
thick), and network model is used for lower layer (infinite half plane).
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.. Figure 15. Magnitude of multiple reflection coefficient (R V ) for a two-

..-. layer earth. Varying-parameter model is used for upper layer (0.5 m "
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Figure 16. Magnitude of multiple reflection coefficient (Rv) for a two-
layer earth. Varying-parameter model is used for upper layer (0 m" thick), and network model is used for lower layer (infinite half plane).
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*Figure 17. Magnitude of multiple reflection coefficient (RV) for a two-
* layer earth. Varying-parameter model is used for upper layer (2 mn
*thick), and network model is used for lover layer (infinite half plane).

* 4. ERROR ANALYSIS

A convenient way to represent the total energy on a per ohm basis is
by integrating the magnitude of the spectral density over the range of
frequencies of interest:

E = j E(W))1 dw *(26)

27r ~

The energy difference between two real spectra is

22

1r fo -EW Ii(W)12 dw .(27)

Here, E(W) represents the spectrum of the total E field of the signal
used as the basis f or analysis, and i(w) is the approximating signal.
The percentage of error (Ps is e4
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_ 0 {I ()i 2- IE(W)12I dw
p = X 100% . (28)
e io IE(W)1 2 d"

Since it is not possible to numerically integrate over the entire spec-
trum, the analysis will include the extrapolated spectrum of 10 1 to 109

Hz in which the variable parameter model is valid. Also, to eliminate
the confusion or cancellation due to phase shift caused by the delay of
the reflected wave, the observer is placed an incremental distance above
the earth's surface. Here also, the analysis is done for zero polar-
ization (i.e., Rv is not used). Table 2 lists the percentages of error
between the total energies of waves above soil modeled by the variable-
parameter model and soil modeled by the network model with the variable-
parameter model as the standard.

The values show that the spectra E(W) and E(w) are displaced from
each other and will probably give values for Pe which will be no less
than 50 percent.

Another model which is often used for calculating propagation con-
stants and reflection coefficients is the constant-parameter model. .-
This model, as the name implies, assumes that the conductivity and
dielectric constant are constant over the entire spectrum of frequencies
and range of possible moisture contents. Typical values for these
parameters are a = 7 mmho/m and er = 15 for the Woodbridge Research
Facility. The values for the percentage of error are listed in table 3.

These values indicate that by judicious selection of a and Cr the
percentage of error can be reduced. However, some error is inevitable
because the spectrum predicted by the constant-parameter model will have
a sharper roll-off, as demonstrated in the comparison of the three
models given in figure 18.

TABLE 2. PERCENTAGE OF ERROR FOR VARIABLE-PARAMETER MODEL
(STANDARD) AND NETWORK MODEL FOR VARIOUS MOISTURE CONTENTS

Moisture content (%) Percentage of error (%)

5 59.0
10 -75.2
15 -80.4
20 -82.7
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TABLE 3. PERCENTAGE OF ERROR FOR VARIABLE-
PARAMETER MODEL (STANDARD) AND CONSTANT-
PARAM4ETER MODEL FOR VARIOUS MOISTURE CONTENTS

Moisture content () Percentage of error (

5 68.*9
10 63.0
15 54.4
20 43.8

9r

8 F-

S7

w

25
U. LINE TYPE PARAMETER MODELS

o 4 -VARYING PARAMETERS
z ----- NETWORK MODEL
0 3-CONSTANT PARAMETERS

wj 2
L

9C 1

105  106 10 6 10 0

FREOUENCY (Hz)

Figure 18. Comparison between reflection coefficient as predicted by
varying regional parameter model, netw~ork model (both at 10-percent
moisture), and constant-parameter model (conductivity =7 mmho/m.
dielectric constant =15).
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5. CONCLUSION

The percentage of error for the energy difference between two

signals was minimized by using the constant-parameter model. This,
however, does not mean that the constant-parameter model is the best

possible method. The spectra of the reflected wave had a sharper roll-

off than either the variable-parameter model or the network model. This

means that there will be some minimum error which cannot be eliminated.

If there were data between 102 and 106 Hz, the network model could

be altered to more closely approximate the true nature of the soil. A

convenient method for obtaining the soil parameter at any frequency and
moisture content would then exist. It could conceivably minimize the
percentage error below 10 percent.

However, the problem generated by the multiple reflection from a

stratified medium would still remain. The only solution for this would
be to follow the stated equations for multiple reflections after the
lower stratification has been characterized by extensive field measure-
ments.
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